

PREPARATION AND PROPERTIES OF CHALCONES OF THE FURAN SERIES

Katarína ŠPIRKOVÁ^a, Pavel BOBÁL^a, Miloslava DANDÁROVÁ^a and Juraj ALFÖLDI^b

^aDepartment of Organic Chemistry, Slovak Technical University, 812 37 Bratislava

^bInstitute of Chemistry, Slovak Academy of Sciences, 842 38 Bratislava

Received September 25, 1991

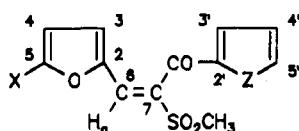
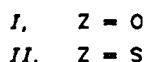
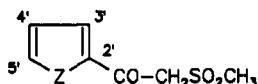
Accepted February 25, 1992

Preparation and reactions of 1-(5-X-2-furyl)-2-methylsulfonyl-2-furoyl or -2-thienylethylenes with nucleophilic reagents are described. Stereochemistry of selected compounds was studied by NMR spectroscopy.

The biological activity of derivatives of 5-nitro-2-furaldehyde, stabilized by condensation with various substrates under formation of 5-nitrofuryl ethylenes and azomethines, is well known¹⁻⁵. Also sulfones are biologically active, representing a large group of successfully employed chemotherapeutics⁶.

The β -keto sulfones of the furyl ethylene series prepared by us contain in their molecule the biologically active sulfonyl group and selected compounds combine two active centers: the sulfonyl group and the nitrofuryl moiety.

In the present study we have found that introduction of a CO group into the molecule of the hitherto investigated furan sulfones lowered significantly their reactivity in condensation reactions. In the preparation of the α,β -unsaturated sulfones - chalcones - we employed successfully the Lehnert modification⁷⁻⁹ of the Knoevenagel condensation. The prepared chalcones were further studied in reactions with nucleophilic reagents.




Similarly as in our previous study¹⁰, we have found that in reactions with nucleophilic reagents the synthesized 1-(5-X-2-furyl)-2-methylsulfonyl-2-furoylethylenes exhibit low reactivity. Oxygen and sulfur nucleophiles attacked the substrates in the position 5 of furan; giving the nucleophilic substitution products in 2 - 4 days (as monitored by thin-layer chromatography).

Another behaviour of chalcones was observed in reaction with secondary amines which afforded the corresponding aminals in good yields (about 60%). The obtained 2-(di-Y)methyl-5-X-furans, where X = Br, NO₂, PhS, PhSO₂ and Y = diethylamine, pyrrolidine, piperidine, morpholine or N-phenylpiperazine, have already been described in our previous papers^{10,18}. In the reaction with diethylamine we isolated, beside the aminal, also 23% of the nucleophilic substitution product.

Because the studied chalcones have four possible positions for a nucleophilic attack, we subjected the reaction mixtures to a thorough analysis. In addition to the aminals and/or products of the nucleophilic reaction, we isolated and proved the unreacted 1-(5-X-2-furyl)-2-methylsulfonyl-2-furoylethylenes, the original 5-X-2-furancarbaldehydes and 2-(2-furyl)-2-oxoethyl methyl sulfone.

The structure of the newly synthesized compounds was confirmed by elemental and spectral analysis. The characteristic spectral data are given in Tables I – IV.

For selected derivatives the spectral data were supplemented by ^{13}C NMR analyses (Table V) and mass spectra. The most intensive ions are listed in Table VI.

X		X	
<i>III</i>	Br	<i>XV</i>	4-CH ₃ CONHC ₆ H ₄ S
<i>IV</i>	NO ₂	<i>XVI</i>	1-methyl-2-imidazolylthio
<i>V</i>	C ₆ H ₅ S	<i>XVII</i>	2-furylmethylthio
<i>VI</i>	C ₆ H ₅ SO ₂	<i>XVIII</i>	(C ₂ H ₅) ₂ N
<i>VII</i>	Br	In formulae	
<i>VIII</i>	C ₆ H ₅ SO ₂	<i>III–VI, IX–XVIII</i>	$\text{Z} = \text{O}$
<i>IX</i>	C ₆ H ₅ O	<i>VII, VIII</i>	$\text{Z} = \text{S}$
<i>X</i>	2-NO ₂ C ₆ H ₄ O		
<i>XI</i>	3-NO ₂ C ₆ H ₄ O		
<i>XII</i>	4-NO ₂ C ₆ H ₄ O		
<i>XIII</i>	CH ₃ S		
<i>XIV</i>	CH ₃ SO ₂		

TABLE I
1-(5-X-2-furyl)-2-methylsulfonyl-2-furoyl and 2-thienocarbonylethylenes

Com- ound	Formula (M. w.)	M. p., °C Yield, %	Calculated/Found		
			% C	% H	% S
III	$C_{12}H_9BrOsS$ (345.2)	125 – 126	41.76	2.63	9.29
		50	42.06	2.95	9.31
IV	$C_{12}H_9NO_7S$ (311.3)	164 – 165	46.30	2.91	10.30
		42	46.61	3.13	10.70
V	$C_{18}H_{14}O_5S_2$ (374.4)	124 – 125	57.74	3.77	17.13
		47	57.85	3.81	17.56
VI	$C_{18}H_{14}O_7S_2$ (406.4)	183 – 184	53.19	3.47	15.78
		37	53.26	3.49	15.84
VII ^a	$C_{12}H_9BrO_4S_2$ (361.2)	114 – 115	39.90	2.51	17.75
		59	39.63	2.82	17.83
VIII ^a	$C_{18}H_{14}O_6S_3$ (422.5)	185 – 186	51.17	3.34	22.77
		42	51.57	3.46	22.70
IX	$C_{18}H_{14}O_6S$ (358.4)	100 – 101	60.33	3.94	8.95
		36	60.61	3.89	8.97
X	$C_{18}H_{13}NO_8S$ (403.4)	129 – 130	53.60	3.25	7.95
		35	53.83	3.73	7.96
XI	$C_{18}H_{13}NO_8S$ (403.4)	134 – 135	53.60	3.25	7.95
		36	53.99	3.48	7.89
XII	$C_{18}H_{13}NO_8S$ (403.4)	141 – 142	53.60	3.25	7.95
		41	53.68	3.64	7.94
XIII	$C_{13}H_{12}O_5S_2$ (312.4)	118 – 119	49.99	3.87	20.53
		71	50.25	3.97	20.74
XIV	$C_{13}H_{12}O_7S_2$ (344.4)	116 – 117	45.34	3.51	18.62
		68	45.48	3.68	18.42
XV	$C_{20}H_{17}NO_6S_2$ (431.5)	159 – 160	55.67	3.97	14.86
		34	55.93	4.11	15.09
XVI	$C_{16}H_{14}N_2O_5S_2$ (378.4)	183 – 184	50.78	3.73	16.95
		39	50.91	3.95	17.24
XVII	$C_{17}H_{14}O_6S_2$ (378.4)	oil	53.96	3.73	16.95
		69	53.83	3.79	17.20
XVIII	$C_{16}H_{19}NO_5S$ (337.4)	129 – 130	56.96	5.68	9.50
		24	56.73	5.72	9.83

^a The 2-furoyl group is replaced by 2-thienyl group.

In addition to the basic carbon NMR spectrum $^{13}\text{C}-\{^1\text{H}\}$, the spectra of compounds *III* and *VII* were also taken using the gated decoupling with NOE, in which all interactions $J(\text{C},\text{H})$ are preserved. The assignment of the carbon signals was confirmed on the basis of the direct coupling constants $^1J(\text{C},\text{H})$ and the characteristic splitting due to long-range interactions. The values of coupling constants were compared with the literature data^{11 - 13}.

Quaternary carbon atoms were identified as signals with lower intensity and their assignment was done by comparison with the chemical shifts in analogous compounds found in the literature^{11 - 13}. For an unequivocal identification of quaternary carbon atoms we made use of selective INEPT experiment¹⁴.

From undecoupled spectra we obtained the value of vicinal coupling constant $^3J(\text{CO},\text{H}_a)$ which served for the determination of the double bond geometry. The values of these constants for *E* and *Z* isomers of ethylenic derivatives with various substituents on the double bond and for the 2-furyl- and 2-thienylethylene compounds have been studied in several papers^{13 - 17}. For a *trans*-arrangement of the interacting nuclei this

TABLE II
Infrared spectral data of the synthesized compounds (ν , cm^{-1})

Compound	$\nu(\text{C=O})$	$\nu_{as}(\text{NO}_2)$	$\nu_s(\text{NO}_2)$	$\nu_{as}(\text{SO}_2)$	$\nu_s(\text{SO}_2)$
<i>III</i>	1 645	-	-	1 317	1 141
<i>IV</i>	1 655	1 529	1 360	1 309	1 147
<i>V</i>	1 638	-	-	1 310	1 135
<i>VI</i>	1 652	-	-	1 321	1 148
<i>VII</i>	1 637	-	-	1 297	1 139
<i>VIII</i>	1 638	-	-	1 322	1 142
<i>IX</i>	1 629	-	-	1 315	1 138
<i>X</i>	1 650	1 519	1 353	1 323	1 143
<i>XI</i>	1 650	1 534	1 352	1 318	1 139
<i>XII</i>	1 675	1 521	1 358	1 342	1 139
<i>XIII</i>	1 643	-	-	1 314	1 136
<i>XIV</i>	1 647	-	-	1 318	1 139
<i>XV^a</i>	1 674	-	-	1 313	1 133
<i>XVI</i>	1 634	-	-	1 316	1 151
<i>XVII</i>	1 613	-	-	1 299	1 154
<i>XVIII</i>	1 628	-	-	1 315	1 140

^a $\nu 3 340 \text{ cm}^{-1}$ (NH) from CH_3CONH_2 .

constant is greater than for the *cis*-arrangement: $^3J(\text{C},\text{H})_{\text{trans}} > ^3J(\text{C},\text{H})_{\text{cis}}$; this is an analogous criterion for *E*- and *Z*-isomers as in the ^1H NMR spectra.

All the studied compounds were isolated as a single geometric isomer. The found value of the coupling constant $^3J(\text{CO},\text{H}_a) = 8.7$ Hz confirms that the carbonyl group and the olefinic proton H_a are in a *trans*-arrangement and thus all the compounds are the *E*-isomers. For a *cis*-relation between carbonyl and the olefinic proton in analogous derivatives the value of $^3J(\text{CO},\text{H}_a)$ is given¹⁴⁻¹⁷ as 6 Hz.

In biologic screening, the synthesized compounds exhibited interesting properties that will be the subject of a separate communication.

EXPERIMENTAL

Infrared spectra were recorded on a Specord M 80 (Carl Zeiss, Jena) instrument using the KBr technique, UV spectra were measured on a Specord M 40 (Carl Zeiss, Jena) spectrometer in methanol at concentration $1 \cdot 10^{-4} - 1 \cdot 10^{-5}$ mol dm $^{-3}$. ^1H NMR spectra were taken on a Tesla BS 587A spectrometer (80 MHz).

TABLE III
Ultraviolet absorption spectra of the synthesized compounds

Compound	λ_{max}	$\log \epsilon$	λ_{max}	$\log \epsilon$	λ_{max}	$\log \epsilon$
<i>III</i>	234	2.74	284	3.29	331	3.15
<i>IV</i>	232	3.14	287	3.29	333	3.11
<i>V</i>	239	3.08	284	3.31	317	3.11
<i>VI</i>	231	3.18	282	3.39	319	3.24
<i>VII</i>	207	3.42	294	3.74	310	3.71
<i>VIII</i>	232	2.95	274	3.18	295	3.22
<i>IX</i>	221	3.11	281	3.28	300	3.40
<i>X</i>	227	2.90	284	3.09	310	2.88
<i>XI</i>	230	3.12	283	3.34	318	3.08
<i>XII</i>	225	3.17	284	3.32	307	3.36
<i>XIII</i>	233	2.78	286	3.26	300	3.19
<i>XIV</i>	233	2.81	284	3.28	314	3.16
<i>XV</i>	229	3.18	265	3.41	294	3.32
<i>XVI</i>	227	3.04	262	3.87	317	3.11
<i>XVII</i>	222	3.36	279	3.93	304	2.88
<i>XVIII</i>	221	3.05	285	3.16	292	3.12

and on FT spectrometers Bruker AM-300 and Varian VXR-300 in $(CD_3)_2CO$ using tetramethylsilane as internal standard. The ^{13}C NMR spectra were taken with the mentioned Bruker instrument at 75.43 MHz in $(CH_3)_2CO$. Mass spectra were measured on an MS 902-S (AEI Manchester) model; direct inlet, ionizing electron energy 70 eV, electron current 100 μ A, ion source temperature 120 – 150 °C.

2-(Z)-Oxoethyl Methyl Sulfones I and II

A solution of 2-bromoacetylfuran or 2-bromoacetylthiophene (0.1 mol) in methanol (50 ml) was added to a stirred suspension of sodium methylsulfinate (0.11 – 0.15 mol) in dry methanol (80 ml) and the reaction mixture was refluxed for 2.5 h. After concentration, the crystalline crude product was purified by crystallization from ethanol.

2-(2-Furyl)-2-oxoethyl methyl sulfone (I): yield 48%, m.p. 122 – 123 °C. For $C_7H_8O_2S$ (188.2) calculated: 44.67% C, 4.28% H, 17.04% S; found: 44.59% C, 4.39% H, 17.51% S. IR spectrum, cm^{-1} : 1 660 (C=O), 1 320 (asym. SO_2), 1 165 (sym. SO_2). UV spectrum, nm ($\log \epsilon$): 227 (2.45), 281 (3.18). 1H NMR spectrum: 3.16 s,

TABLE IV
 1H NMR spectra (δ , ppm)

Compound	CH_3	H_a	H_3	H_4	H_3'	H_4'	H_5'
III	3.24 s	7.58 s	7.11 d	6.66 d	7.34 dd	6.61 dd	7.90 d
IV	3.27 s	7.74 s	7.32 d	7.53 d	7.42 dd	6.69 dd	7.91 d
V ^a	3.23 s	7.62 s	7.19 d	6.86 d	7.29 d	6.60 dd	7.80 s
VI ^b	3.21 s	7.65 s	7.21 d	7.36 d	7.36 d	6.64 dd	7.91 s
VII	3.24 s	7.59 s	7.09 d	6.62 d	7.70 dd	7.19 dd	8.04 dd
VIII ^c	3.19 s	7.61 s	7.06 d	6.59 d	7.64 dd	7.16 dd	8.02 dd
IX ^d	3.00 s	7.08 s	6.91 s	6.48 d	6.95 d	6.77 dd	7.28 d
X ^e	3.17 s	7.52 s	7.17 d	5.91 d	7.19 d	6.49 dd	7.77 d
XI ^f	3.18 s	7.52 s	7.17 d	6.00 d	7.17 d	6.52 dd	7.78 d
XII ^g	3.29 s	7.65 s	6.99 d	6.08 d	7.14 d	6.65 dd	7.80 d
XIII ^h	3.24 s	7.58 s	7.33 d	6.67 d	7.12 d	6.70 dd	7.93 d
XIV ⁱ	3.19 s	7.54 s	6.92 d	6.30 d	7.29 d	6.64 dd	7.86 d
XV ^j	3.06 s	7.64 s	6.95 d	6.75 d	7.06 d	6.60 dd	7.75 d
XVI ^k	3.03 s	7.27 s	7.01 d	6.73 d	6.86 d	6.78 dd	7.41 d
XVII ^l	3.38 s	7.48 s	7.36 d	6.68 d	7.41 d	6.73 dd	7.97 d
XVIII ^m	3.33 s	7.28 s	7.13 d	5.37 d	7.20 d	6.66 dd	7.83 d

^a PhS (7.40 – 7.15 m); ^b PhSO₂ (7.85 – 7.65 m); ^c PhSO₂ (7.74 – 7.52 m); ^d PhO (7.22 – 6.85 m); ^e 2-NO₂PhO (8.05 – 7.58 m); ^f 3-NO₂PhO (7.72 – 7.51 m); ^g 4-NO₂PhO (8.22 – 7.81 m); ^h CH₃S (2.84 s); ⁱ CH₃SO₂ (3.19 s); ^j CH₃CONHPhS (3.58 s, 9.66 s, 7.47 – 7.18 m); ^k 1-methyl-2-imidazolylthio (2.96 s, 7.01 s, 7.21 s); ^l 2-furfurylthio (4.34 s, 6.31 dd, 6.37 d, 7.45 d); ^m Et₂N (1.01 t, 3.35 q).

TABLE V
 ^{13}C NMR spectra (δ , ppm)

Con- pound	CH ₃	C-2	C-3	C-4	C-5	C-6	C-7	CO	C-2'	C-3'	C-4'	C-5'
III	44.13	150.51	123.29	115.99	128.68	127.95	135.53	178.70	153.56	121.87	113.86	149.55
IV	43.71	149.56	121.64	113.65	153.84	127.44	140.81	177.67	152.94	122.73	114.60	150.13
V ^a	43.95	151.46	122.50	120.90	150.69	128.06	136.12	178.56	153.31	121.90	113.74	149.52
VI ^b	43.65	152.83 ^c	119.43	120.71	152.39 ^c	127.62	139.96	177.89	153.86	122.83	114.03	150.25
VII	43.84	150.21	123.07	115.93	137.22	127.39	135.98	184.08	144.66	136.68	129.45	137.22

^a X = PhS 133.84 (C-1), 130.37 (C-2, C-6), 130.31 (C-3, C-5), 128.44 (C-4); ^b X = PhSO₂ 139.52 (C-1), 128.65 (C-2, C-6), 130.63 (C-3, C-5), 135.21 (C-4);
^c the assignment may be interchanged.

3 H (CH₃); 4.71 s, 2 H (CH₂); 7.66 d, 1 H (H-3'); 6.78 dd, 1 H (H-4'); 7.99 d, 1 H (H-5'); $J(3',4') = 3.9$ Hz, $J(4',5') = 1.9$ Hz, $J(3',5') < 1$ (unresolved). ¹³C NMR spectrum: 42.29 (CH₃), 61.56 (CH₂), 177.76 (CO), 152.91 (C-2'), 121.93 (C-3'), 113.85 (C-4'), 149.82 (C-5').

2-(2-Thienyl)-2-oxoethyl methyl sulfone (II): yield 51%, m.p. 117 – 118 °C. For C₇H₈O₃S₂ (156.3) calculated: 41.16% C, 3.95% H, 31.40% S; found: 41.75% C, 3.99% H, 31.84% S. IR spectrum, cm⁻¹: 1 647 (C=O), 1 303 (asym. SO₂), 1 157 (sym. SO₂). UV spectrum, nm (log ε): 266 (3.06), 293 (2.98). ¹H NMR spectrum: 3.19 s, 3 H (CH₃); 4.87 s, 2 H (CH₂); 8.09 d, 1 H (H-3'); 7.33 dd, 1 H (H-4'); 8.17 d, 1 H (H-5'); $J(3',4') = 3.9$ Hz, $J(4',5') = 4.8$ Hz, $J(3',5') = 1.4$ Hz. ¹³C NMR spectrum: 42.28 (CH₃), 62.09 (CH₂), 183.03 (CO), 144.53 (C-2'), 136.65 (C-3'), 129.70 (C-4'), 137.51 (C-5').

1-(5-X-2-Furyl)-2-methylsulfonyl-2-furoyl- and 2-Thienocarbonylethylenes

Condensation products III – VIII. A solution of titanium tetrachloride (0.1 mol) in dry tetrachloromethane (25 ml) was added under stirring to dry tetrahydrofuran (200 ml) at 0 °C. Then, the corresponding fural (0.05 mol) and the β-ketosulfone (0.05 mol) were added in succession, the temperature being held between –5 °C and –10 °C. After addition of pyridine (0.2 mol) in tetrahydrofuran (30 ml) the reaction mixture was stirred at 0 °C to –5 °C for 48 h and then decomposed with water (50 ml). The product was extracted with ether and the ethereal solution dried and concentrated. After standing for 2 – 4 days the crystalline material was collected and purified by crystallization from ethanol.

Substitution products IX – XVIII. A solution of compound *III* (0.03 mol) and the corresponding sodium phenoxide or secondary amine, or compound *IV* (0.03 mol) and the sulfur nucleophile (0.09 mol), in acetonitrile (20 ml) were stirred under reflux, the reaction being monitored by thin-layer chromatography. The reaction mixture was concentrated and the product was isolated by column chromatography on silica gel in benzene–ethyl acetate (3 : 1) and crystallized from ethanol.

TABLE VI
Mass spectra of some synthesized compounds

Compound	<i>m/z</i> (relative abundance ^a)
<i>III</i>	344 / 346, M ⁺⁺ / M ⁺⁺ (0.01/0.01), 265 (100), 186 (61), 158 (8), 129 (8), 123 (17), 102 (14), 95 (25), 63 (15), 51 (10), 39 (19)
<i>IV</i>	311, M ⁺⁺ (0.01), 265 (87), 186 (70), 158 (12), 130 (9), 123 (19), 95 (100), 76 (10), 63 (15), 51 (11), 39 (26)
<i>V</i>	374, M ⁺⁺ (0.03), 265 (100), 202 (6), 186 (42), 123 (18), 110 (7), 102 (6), 95 (48), 77 (5), 51 (6), 39 (8)
<i>VI</i>	406, M ⁺⁺ (0.001), 265 (100), 202 (6), 186 (43), 125 (6), 123 (18), 102 (7), 95 (55), 77 (9), 51 (8), 39 (8)
<i>VII</i>	360 / 362, M ⁺⁺ / M ⁺⁺ (0.01/0.01), 281 (100), 202 (52), 174 (13), 157 (5), 145 (14), 123 (24), 111 (86), 83 (11), 63 (13), 39 (25)

^a The table lists relative abundances of both M⁺⁺ and 9 – 10 most intense peaks.

REFERENCES

1. Bleyer A. F.: *Nitrofurany i ikh primenenie v medicine*. Izd. AN Latv.SSR, Riga 1958.
2. Kováč J.: *Thesis*. Slovak Technical University, Bratislava 1976.
3. Gunovitz S., Holm B.: *Acta Pharm. Suec.* **14**, 225 (1977).
4. Schröder E.: *Phar. Zeitung* **121**, 406 (1976).
5. Zidermane A. A., Danvarte A. Zh., Suchova N. M., Lidak M. N.: *Khim.-Pharm. Zh.* **12**, 86 (1978).
6. Negwer M.: *Organische Chemische Arzneimittel und ihre Synonyma*. Akad.-Verlag, Berlin 1978.
7. Lehnert W.: *Tetrahedron* **28**, 663 (1973).
8. Lehnert W.: *Tetrahedron* **30**, 301 (1974).
9. Baxter G. J., Brown F. C.: *Aust. J. Chem.* **28**, 1551 (1975).
10. Špírková K., Dočolomanský P., Kada R.: *Chem. Papers*, in press.
11. Gronowitz S., Johnson I., Hörfeldt A. B.: *Chem. Scr.* **7**, 211 (1975).
12. Musumara G., Ballistreri F. P.: *Chem. Scr.* **18**, 209 (1981).
13. Dandárová M., Végh D., Kováč J., Goljer I., Pronayová N., Špírková K.: *Collect. Czech. Chem. Commun.* **51**, 889 (1985).
14. Bax A.: *J. Magn. Reson.* **57**, 314 (1984).
15. Vogeli V., von Philipsborn W.: *Org. Magn. Reson.* **7**, 617 (1975).
16. Kingsburg C. A., Druncy D., Sopchik A.: *J. Org. Chem.* **41**, 3863 (1976).
17. Gregory B., Hinz W., Jones R. A., Argues J. S.: *J. Chem. Res.* **5**, 311 (1984).
18. Špírková K., Kada R., Kováč J., Knoppová V., Dzuroška M., Margušová M.: *Collect. Czech. Chem. Commun.* **50**, 459 (1985).

Translated by M. Tichý.